

100110110011001011100011010101011010110101110001010011100101010100101110011001010011010110110
011011010111010100100010101011101010010101010101010101101001011010111010000110101110011010111
100110101111010010101010010101001010001111010101011010010101010100101010100100001011111010010

100110110011001011100011010101011010110101110001010011100101010100101110011001010011010110110
011011010111010100100010101011101010010101010101010101101001011010111010000110101110011010111
100110101111010010101010010101001010001111010101011010010101010100101010100100001011111010010

The

Researcher’s
Guide

Creating software
at the University of Liège

 2/16

INTRODUCTION  3 

USING SOFTWARE  4 

DISTRIBUTING YOUR SOFTWARE:  COMMERCIAL OR OPEN‐SOURCE LICENCE?  5 

DO YOU WANT TO KEEP THE SOURCE CODE SECRET?  5 
DO YOU WANT TO SHARE THE SOURCE CODE?  5 

INTEGRATING OPEN‐SOURCE CODE  7 

WHEN DEVELOPING OPEN‐SOURCE SOFTWARE  7 
WHEN DEVELOPING PROPRIETARY SOFTWARE  8 

HOW TO PROTECT YOUR RIGHTS?  9 

PROTECTING OWNERSHIP  9 
COPYRIGHT  10 
CONFIDENTIALITY AGREEMENTS  10 
PATENTS  10 
TRADEMARKS AND DOMAIN NAMES  11 
INDUSTRIAL DESIGNS  11 
SUI GENERIS LAW ON DATABASE CONTENTS  11 
COPYRIGHT ON DATABASES (AS A CONTAINER)  11 
INVENTION ANNOUNCEMENT AND INVENTION DISCLOSURE  12 

BEST PRACTICES FOR DEVELOPING CODE  13 

CODING RULES  13 
DOCUMENTING CODE  13 
VERSION MANAGEMENT SYSTEMS / FORGES  13 
COMMUNICATION TOOLS  14 
DESIGN PATTERNS  14 

RECOMMENDED READING  15 

GLOSSARY  16 

Version 1.4
June 2012

Authors
Jérémie Fays (ULg)

Céline Thillou (UMONS)
Nathalie Poupaert (UCL)

Anne-Gaelle Peters (UCL)
Yves Laccroix (ADISIF)

Nathanael Ackerman (ULB)
Bernard Detrembleur (FUNDP)

Sébastien Adam (UCL)
Edgar Moya Alvarez (ULB)
Jonathan Pardo (UMONS)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

 3/16

 Introduction

Introduction

Many university researchers develop their own software, at first
generally in order to meet their own needs, but then this software
evolves and starts to draw the interest of other people, researchers
or manufacturers.

This is when certain difficulties can arise:

̶ practical problems for developing code in collaboration with
several institutions, lack of documentation, source
management tools and communication tools (forums / wikis /
mailing lists);

̶ legal problems in connection with the ownership of the code

(the software belongs to several people and thus cannot be
disposed of freely): this type of problem can prevent a
laboratory from negotiating a research contract or marketing
its software;

̶ legal problems in connection with licences: if snippets of

open-source code distributed under incompatible licences
(for example GPLv2 and Mozilla 1.1) are integrated in the
software, the resulting software cannot be distributed legally
via a website, not even for free, not even with the source
code, and not even when only for scientific collaboration...

However, many of these problems can be overcome by addressing
some questions during the early stages of software development.

This is the main purpose behind this guide, based on interviews with
several researchers: to explain a series of best practices aimed at
saving a lot of time if the software is ever developed.

Who should read this guide ?

This guide is aimed at everyone in the University who is involved
with software development: students, researchers, PhD students,
as well as academics and promoters who sometimes supervise
software development.

It is obvious that this guide only provides an overview of these
fields, each of which could fill an entire volume. We were forced to
cut out a lot of information, sometimes even intentionally in order
to guarantee that the document was readable. If you would like to
take this further or have any questions on the matter, please
contact your Knowledge Transfer Office (KTO) for further advice.

Welcome to the first version
of this guide. All
suggestions are welcome
for the next version!
Also, please let us know if
you have any experience to
share concerning the
development of IT projects,
open-source licences,
collaboration tools for
developers, software
quality, etc.

Contact KTO
(Knowledge Transfer O ffice)
Interface Entreprises-Ulg
Jérémie Fays
j.fays@ulg.ac.be
04 / 349 85 21

We could not avoid using certain
common terms from the IT field
(open source, software library,
source code, etc.). A definition
of these terms is provided in the
GLOSSARY at the end of the
guide.

 4/16

 Using software

Using software

It is quite common to start developing new software based on or
using existing software, and to use existing software to run tests,
compare results, etc.

ALL SOFTWARE FROM EXTERNAL SOURCES MUST HAVE A LICENCE,
which defines the rights of the user to use/modify the software.

Before using the software, it is advisable to read the licence and
understand its effects. If software from an external source does not
include a licence, you must assume that you are not entitled to use
it. It is advisable in this case to identify the copyright owners (the
author, his/her employer) and ask them for a licence. This can be
done through your Knowledge Transfer Office (KTO).

In addition, commercial software available in student / academic /
non-commercial versions (for free or at a discount price) generally
includes limitations on the commercial uses to which it can be put.

If the software is produced by a partner in a project or by an
identified third party, it is highly advisable to sign a licence in order
to define your user rights. Please contact your KTO for this.

If the licence is a proprietary licence and you have the option of
choosing different competing software, it is advisable to choose
software with an open-source licence. Most software programs
(editors, graphics, etc.) have open-source equivalents. You can find
more information on this at Osalt website (http://www.osalt.com),
among others.

ALL SOFTWARE MUST HAVE A
LICENCE.

Otherwise, you must assume
that you are not entitled to use it.

 5/16

 Distributing your software

Distributing your software:
commercial or open-source licence?

When developing software, it is advisable to choose the licence
under which the software will be distributed as early on as
possible (see the next chapter: “Integrating open-source code”).
This makes it possible, from the start, to identify what open-source
modules can be integrated for easy development.

It will also save you from suddenly discovering, after years of
development, that your software cannot be sold, or even distributed
for free because it uses incompatible licences!

Do you want to keep the source code secret?

In this case you need a “proprietary” licence (the source code is
not distributed) as opposed to distribution under an “open source”
licence (the source code is accessible).

Many advantages can be achieved by not granting access to your
source code:

̶ it makes it more difficult for competitors to copy your
technology;

̶ you are essential when it comes to developing new
functionalities;

̶ the software’s weaknesses are less visible;
̶ the software can be sold.

Sometimes you have no other choice: if the software is developed
for an industrial partner who wants to keep the source code, or if
the technology is being patented, a proprietary licence is required.

In short, proprietary distribution allows you to retain control and
makes it easier to sell the software.

Do you want to share the source code?

Then you should choose distribution with an “open source” or
“free” licence (see the recommended licences in the following
chapter).

There are many advantages to open-source distribution:

̶ the software is generally free, which makes it easier to gain
users (open source ensures easier dissemination of the
project);

̶ you can integrate many existing open source modules, which
speeds up the development of the project;

̶ you can easily attract other developers who would like to
contribute to the development of new functions;

̶ all users can easily correct bugs and weaknesses in the
software.

PROPRIETARY LICENCE
The source code is not
distributed. This is the case
with most commercial
licences.

For example: Windows

OPEN-SOURCE LICENCE
The source code is made
available, generally via a
website.

For example: Linux

WARNING!
Certain open-source licences
are incompatible with
commercial licences.

Likewise, certain open-source
licences are mutually
incompatible!

 6/16

 Distributing your software

Sometimes you have no other choice: for example, when
contributing to an existing open-source project, or complying with
the requirements of a financial backer or industrial partner.

In short, open-source distribution helps speed up the
development of the software and increases its dissemination.

 7/16

Integrating open-source code

Integrating open-source code

There are many types of open-source licences, some of which are
mutually incompatible. The Free Software Foundation keeps an up-
to-date list of licences that are compatible with the GPL licence
family (GPL, LGPL, AGPL, etc.) which are the most commonly used
open-source licences.
http://www.gnu.org/licenses/license-
list.html#GPLCompatibleLicenses

When developing open-source software

Many open-source licences are mutually incompatible. For this
reason, it is important to decide on a specific distribution licence at
the start of the project and only to integrate libraries that have
compatible licences. Among the plethora of available open-source
licences, these are the four licences we recommend for distributing
your software:

GPLv3 (or v2)
GNU Public Licence

This licence does not support mixing with proprietary software. It
requires the source code to be made available in the event of
distributing the software. This is the default recommended
licence for open-source projects.

There are two versions: version 2 (v2) is the most common (more
than half of all open-source projects) but it is incomplete and gives
rise to legal issues under European law. On the other hand, v3 is
much more complete and compatible with international law. For
this reason, we recommend using GPLv3.

Unfortunately though, GPLv3 is incompatible with GPLv2...

If you absolutely need to integrate a library with the GPLv2 licence,
then you have no other choice: you must also distribute your
software under GPLv2.

AGPLv3
Affero GNO Public Licence

Based on GPLv3, this licence also requires the source code to be
distributed for online services. Thus, it protects the open-source
code from being appropriated by people who offer online services
but do not distribute their code (for example: Google Docs). It is
recommended for projects with web potential, if you want to
prevent it from being used by “proprietary” web service
providers.

It is also incompatible with GPLv2…

INCOMPATIBLE LICENCES
Not all open-source licences
are mutually compatible.

 Only important when you
want to distribute the
software.

 If you only want the
software for internal use,
compatibility is rarely an
issue.

GPL version 3 licence
 Recommended by default

AGPL version 3 licence
 Recommended to protect
your code from being
appropriated by proprietary
online service providers.

 8/16

Integrating open-source code

EUPL
European Union Public Licence

This licence is the European equivalent of the AGPL. It has the
advantage of being translated into 22 languages. It supports the
integration of GPLv2 libraries, but then it becomes GPLv2, with the
resulting consequences.

This licence is recommended if you want to participate in public
procurement contracts aimed at open-source software.
Compatible with: GPLv2, OSLv2.1/v3.0, CPLv1.0, CeCILLv2.0.

LGPLv3
Lesser GNU Public Licence

Supports integration in proprietary developments. This licence is
especially useful when you are developing a library and it is of
strategic interest to be able to integrate this library in proprietary
software, for example in order to compete with an existing
proprietary standard.

When developing proprietary software

Some open-source licences allow the code they protect to be
integrated in proprietary software, as long as certain conditions are
observed (in particular: mentioning the copyright).

If you develop proprietary software, you can integrate libraries
distributed under the following licences: LGPL, Apache, MIT and
BSD. Other licences also support integration in proprietary
software: for further advice, please contact your Knowledge
Transfer Office (KTO).

You can normally also integrate proprietary code developed
internally or by another laboratory in the institution, with the
agreement of the authors.

EU PL licence
 Recommended for certain
procurement contracts which
require the licence to be
written in the language of the
country.

LGPL version 3 licence
 Recommended for
libraries that have to compete
with a proprietary standard.

Protecting your rights

 9/16

How to protect your rights?

Protecting ownership

Whether in the context of scientific or industrial collaboration, it is
important to maintain unified ownership of the entire source
code. Otherwise, a co-owner could potentially block future
developments, whether in research projects or for commercial
purposes.

This is especially true in the case of proprietary software
(proprietary: only the executable file is distributed, without the
source code), but also sometimes for open-source projects.

Software ownership generally depends on the intellectual property
regulations that apply to each university. Most intellectual property
regulations include the presumption provided for under the Act of
1994 relating to the legal protection of computer programs, and
thus provide for the ownership of software developed by researchers
to be granted to the university.

This concern also affects collaborations with PhD students, post-
docs, fellows, interns and student projects: if a person will be
developing software, it is advisable that he or she is asked to sign
an agreement foreseeing the transfer of rights before starting to
work, in order to avoid any subsequent disputes.

Likewise, whenever any issues begin to emerge, this ownership can
be backed up by legal instruments, which is essential before the
software can be marketed as well as recommended before
undertaking any collaboration. Software is protected by copyright by
default, but additional protection systems may also be used.

A co-owner can block the
development of software,
whether in the context of a
research project or for
commercial purposes.

Best practice: ask every
person working on the source
code to sign an agreement
foreseeing the transfer of
rights.

WARNING: this agreement
must contain certain
compulsory information.

 Contact your Knowledge
Transfer Office for a
document template.

Protecting your rights

 10/16

Copyright

La Copyright protection applies from the outset as soon as the work
is created, without requiring any further formalities. Therefore, in
the event of a dispute, it would be necessary to provide proof of
authorship and priority. In practical terms, it would be necessary to
prove that one actually wrote the source code at a given moment in
time. The contents of laboratory logs, notes and any other written
traces that can provide proof that the software was actually
developed by such a person at a given time are always useful for
providing this proof. However, the only way to establish the date
before a court is to use a recognised depositing service: iDepot,
IDDN, APP (in France), etc.

This type of process is inexpensive (iDepot = €45 for five years),
but copyright only offers limited protection. Thus, it is easy to prove
for identical copies (illegal copies of programs for example, or code
snippets extracted verbatim), but it can be complicated to show
infringement when source code is “inspired” by other source code…

Nevertheless, depositing source code is a good practice before
undertaking any collaboration, since it effectively dispels any
confusion about what each party owned before starting the
collaboration, while also maintaining secrecy.

Confidentiality agreements

When collaborating on proprietary code, it is advisable to include a
confidentiality clause in the research contract. This clause will
provide a solid legal basis, and may indicate financial penalties, in
particular as deterrents.

Patents

Patents can be filed (even in Europe) for software developments, as
long as a technical effect can be proven (for example, on-board
real-time video-processing software has a technical effect on the
world around it, whereas an accounting software does not). Unlike
copyright, patents do not protect the source code, only the
functionality, regardless of how it is written. This protection has a
maximum duration of 20 years.

Disadvantages include the complexity of the procedures (drawing up
the patent plus several years of follow-up) and their cost (€20k to
€100k according to the countries in which protection is sought).

Copyright protects the form:
the source code and the
executable software.

However, it does not protect
the functionalities of the
software.

Unlike copyright, patents
protect functionality,
regardless of how it is
written.

Protecting your rights

 11/16

Serious market opportunities must therefore be foreseeable before
this process can be considered.

In addition, patents are public and describe the algorithm in detail:
this gives your competitors everything they need to draw inspiration
from your code! Therefore, it is important to make sure that patents
are broad enough to prevent infringement.

Trademarks and domain names

Trademarks entitle the holder to prevent a similar or identical name
from being used for certain types of product or services. This makes
them useful for protecting a reputation — a “brand image” — if, for
example, your software begins to gain recognition, or if you want to
give it broader dissemination (for example when developing an
open-source community). Trademarks are relatively inexpensive
(from €500 to several thousand euros for 10 years when using an
agent, according to the type of trademark and the territory
covered). They last for as long as you pay to maintain them and for
as long as they remain in use.

Domain names for internet activity can be reserved for a very low
price (under €20/year): this is a very easy step if you want to build
up a reputation around a name.

Industrial designs

The graphic interface and the design, if they are of major
importance for the appeal of the software, can be protected as
“Industrial Designs”. The cost is similar to that of filing a trademark,
but the duration is limited to 25 years at most.

Sui generis law on database contents

Sui generis law offers 15 years of protection for the producers of
databases, in other words the legal or natural persons who take the
initiative and assume the risk of making the investments required to
compile the database.

This sui generis law provides certain protection of the contents of
the database, granting the producer two prerogatives: the right to
oppose the extraction (provisional or final transfer to another
medium) of all or a substantial part of the contents of the database,
and the right to oppose the reuse (making available to the public) of
all or a substantial part of the contents of the database.

Copyright on databases (as a container)

If it is original enough, the database as a container (in other words,
the structure with which the elements are selected and arranged,
also referred to as the architecture or the backbone of the database)
is protected by copyright, from the time that said container is
created, without any further formality being required. Therefore, as
in the case of software, it is important in the event of a dispute to
be able to offer proof of priority and thus to be able to establish a

Sui generis law helps protect
the considerable investments
required in order to obtain a
validated, high-quality
database.

Trademarks can be useful for
differentiating quality
products or services from the
competition.

Protecting your rights

 12/16

certain date for the creation of the database. This can be done by
filing the creation with a recognised service (cf. above).

Invention Announcement and Invention Disclosure

They are not means for protection as much as communication tools.
These forms allow you to interact with the KTO of your university in
order to initiate the protection or commercialisation processes:

Invention Announcement
Short form (2 pages) containing the main information on the software
and providing the basis for an initial meeting with an adviser.

Invention Disclosure
More complete form, to be filled out when protection or
commercialisation are foreseeable.

Best practices

 13/16

Best practices for developing code

As soon as two people are working together on the software, it is
essential to start thinking about collaboration tools. These tools take
some time to set up and program, but the longer you wait, the more
work will need to be done. Here are some useful tips:

Coding rules

These writing rules help ensure uniformity of the code and make it
easier to understand. They are used in most open-source projects.
Although these rules vary for each project, a number of major
guidelines can be found, and inspiration can be drawn from existing
rules to help you get started (one example for PHP language:
http://pear.php.net/manual/en/standards.php)

A part of these rules relating to page layout can also be automated
in your favourite code editor.

Coding rules generally cover:

- rules for naming files, classes, variables and functions;
- code indentation (to highlight the structure);
- code organisation (for example: separating the graphic

interface from the model);
- code documentation.

Documenting code

Although this aspect is generally included in the coding rules, we
still felt that we should emphasise this point: not only does
documenting code make it possible to collaborate with other
developers, it also allows you to save enormous amounts of time
when you need to look up certain parts of the code after a few
months. Every function/method must describe at least its input and
output variables.

Note: certain languages (PERL, Python) have their own
documentation managers. Certain software applications can also be
used to partially automate code documentation, such as:
Doxygen (www.doxygen.org) or Javadoc
(http://www.oracle.com/technetwork/java/javase/documentation/in
dex-jsp-135444.html).

Version management systems / forges

These systems are used to centralise the code on a server and
manage all updates (versions) made to the various files. This makes

CODING RULES are aimed at
standardising the writing of
source code in order to make
it easier to understand.

Best practices

 14/16

sure that all developers have permanent access to the latest version
of the code for their developments.

These systems often make it possible to manage different
development branches: for example continuing to release bug
corrections and other incremental updates (v1.0, v1.1, v1.2, etc.)
while at the same time working on version 2.0, which includes
completely new functionalities. Some examples of version
management systems include: SVN and Git.

Forges (for example code.google.com or www.sourceforge.org) offer
a version management system as well as additional tools: mailing
lists, forums, documentation wikis, bug trackers, etc.

Communication tools

The larger a project gets, the more important it becomes to
structure communication among developers, as well as with users.
Mailing lists, forums, wikis and bug trackers offer a solution to this
need.

It may also be useful to use a task administrator which can include
bug tracking, ticketing, requests for improvements and project
management (breaking complex tasks down into simple tasks,
distributing tasks among developers).
E.g. JIRA: http://atlassian.com/software/jira/overview

Design patterns

Design patterns are one way to develop software by using designs
that have already proven to be effective.

This makes it easier to adapt the software when, in the future, you
need to manage a new type of database, or when you want to
redevelop the user interface with new, more-efficient tools.

For example, the best known design pattern is “MVC” (Model-View-
Controller). This design pattern establishes a separation between
the view (view = user interface), data processing (controller = data
processing, verification of user inputs) and data interaction (model
= database management, file management).

 15/16

Recommended reading

Legal aspects of free / open-source software (in French)
(http://www.crid.be/pdf/public/6566.pdf)

Osalt: Open-source alternatives to well-known commercial software (http://www.osalt.com)

List of GPL-compatible free software licences
http://www.gnu.org/licenses/license-list.html#GPLCompatibleLicenses

Software Invention Announcement
(http://www.interface.ulg.ac.be/docs/Software_disclosure.doc)

Prince2: a method for managing IT projects (http://www.prince2.com). This method has the
advantage of being flexible and adapting to projects according to their size and management needs.

 16/16

Glossary

Source code
Code written by a programmer in a human-readable computer language (Fortran, C++, Pascal,
etc.). This code is then generally compiled in order to generate a machine-readable executable file
(for example, .exe files in Windows). These executable files are not human-readable, and therefore
cannot be easily modified.

Open-source software / Free software
Software distributed with an “open source” or “free” licence. Dozens of types of licences can be
classified as “open source” or “free” and they have the common feature of allowing access to the
source code of the software if it is distributed.

A licence is said to be “free” when the licence guarantees the four freedoms defined by the Free
Software Foundation (http://www.fsf.org) and it is said to be “open source” if the licence meets
the 10 criteria defined by the Open Source Initiative (http://www.opensource.org/). In practical
terms, these criteria are very similar, and many licences are both “free” and “open source”.

Note: some software publishers allow access to a part of their source code (for example to allow the
customer to verify security-related aspects). This does not make them open-source software, since
the code is only available in read-only mode. They never allow users to modify the software by
themselves, or to reuse code snippets.

Proprietary software
Software sold (or distributed free of charge) without access to the source code. The user then
depends on the publisher for any bug corrections or new functionalities. Most commercial software
(Windows, Photoshop, etc.) is proprietary, but this is also the case with freeware and shareware
applications.

Freeware
Proprietary software distributed free of charge. Therefore, no access to the source code is provided.

Shareware
Proprietary software distributed free of charge in demo mode. This software can only be used for a
limited period of time, or has limited functionality compared with the full commercial version.

Distribution (of software)
The term “distribution” can refer to selling software, installing it on a computer or offering it as a
download from a website.

Software library
A library contains a series of functions that are used in a domain, such as mathematical functions,
database management, creation of graphics, etc. Many libraries are available and can be integrated
in software, which saves you from having to rewrite these functions.

